Package com.rapidminer.operator.RatingPrediction

Source Code of com.rapidminer.operator.RatingPrediction.MatrixFO

package com.rapidminer.operator.RatingPrediction;


import java.util.List;

import com.rapidminer.data.EntityMapping;
import com.rapidminer.data.IEntityMapping;
import com.rapidminer.data.IRatings;
import com.rapidminer.data.Ratings;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.AttributeRole;
import com.rapidminer.example.Attributes;
import com.rapidminer.example.Example;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.UserError;
import com.rapidminer.operator.ports.InputPort;
import com.rapidminer.operator.ports.OutputPort;
import com.rapidminer.operator.ports.metadata.ExampleSetPassThroughRule;
import com.rapidminer.operator.ports.metadata.ExampleSetPrecondition;
import com.rapidminer.operator.ports.metadata.GenerateNewMDRule;
import com.rapidminer.operator.ports.metadata.MetaData;
import com.rapidminer.operator.ports.metadata.SetRelation;
import com.rapidminer.parameter.ParameterType;
import com.rapidminer.parameter.ParameterTypeDouble;
import com.rapidminer.parameter.ParameterTypeInt;
import com.rapidminer.tools.Ontology;

/**
* Matrix Factorization operator for Rating Prediction
*
* @see com.rapidminer.operator.RatingPrediction.MatrixFO
* @see com.rapidminer.operator.RatingPrediction.MatrixFactorization
*
* @author Matej Mihelcic (Ru�er Bo�kovi� Institute)
*/

public class MatrixFO extends Operator{
  private InputPort exampleSetInput = getInputPorts().createPort("example set");
  private OutputPort exampleSetOutput1 = getOutputPorts().createPort("Model");
  private OutputPort exampleSetOutput = getOutputPorts().createPort("example set");

 
  public static final String PARAMETER_NUM_FACTORS = "Num Factors";
  public static final String PARAMETER_REGULARIZATION="Regularization";
  public static final String PARAMETER_LEARN_RATE="Learn rate";
  public static final String PARAMETER_NUM_ITER="Iteration number";
  public static final String PARAMETER_INIT_MEAN="Initial mean";
  public static final String PARAMETER_INIT_STDEV="Initial stdev";
  public static final String PARAMETER_Min="Min Rating";
  public static final String PARAMETER_Range="Range";

 
  public List<ParameterType> getParameterTypes() {
     List<ParameterType> types = super.getParameterTypes();
     types.add(new ParameterTypeInt(PARAMETER_Min, "Value of minimal rating value. Range: integer; 0-+?; default: 1", 0, Integer.MAX_VALUE, 1, false));
     types.add(new ParameterTypeInt(PARAMETER_Range, "Range of possible rating values.  Range: integer; 1-+?; default: 4 ; Max Rating=Min Rating+Range;", 1, Integer.MAX_VALUE, 4, false));
     types.add(new ParameterTypeInt(PARAMETER_NUM_FACTORS, "Number of latent factors. Range: integer; 1-+?; default: 10", 1, Integer.MAX_VALUE, 10, true));
     types.add(new ParameterTypeDouble(PARAMETER_LEARN_RATE, "Learning rate of algorithm.  Range: double; 0-+?; default: 0.01", 0, Double.MAX_VALUE, 0.01, false));
     types.add(new ParameterTypeInt(PARAMETER_NUM_ITER, "Number of iterations.  Range: integer; 1-+?; default: 30", 1, Integer.MAX_VALUE, 30, false));
     types.add(new ParameterTypeDouble(PARAMETER_REGULARIZATION, "Value of regularization parameter. Range: double; 0-+?; default: 0.015", 0, Double.MAX_VALUE, 0.015, true));
     types.add(new ParameterTypeDouble(PARAMETER_INIT_MEAN, "Initial mean.  Range: double; 0-+?; default: 0", 0, Double.MAX_VALUE, 0, true));
     types.add(new ParameterTypeDouble(PARAMETER_INIT_STDEV, "Initial stdev.  Range: double; 0-+?; default: 0.1", 0, Double.MAX_VALUE, 0.1, true));
     return types;
     }
 
 
  /**
   * Constructor
   */
  public MatrixFO(OperatorDescription description) {
    super(description);

    exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "user identification", Ontology.ATTRIBUTE_VALUE));
    exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "item identification", Ontology.ATTRIBUTE_VALUE));
    exampleSetInput.addPrecondition(new ExampleSetPrecondition(exampleSetInput, "label", Ontology.ATTRIBUTE_VALUE));
   
    getTransformer().addRule(new ExampleSetPassThroughRule(exampleSetInput, exampleSetOutput, SetRelation.EQUAL) {
    });
   
     getTransformer().addRule(new GenerateNewMDRule(exampleSetOutput1, new MetaData(RatingPredictor.class)) {
            
     });
   
  }

  @Override
  public void doWork() throws OperatorException {
   
    ExampleSet exampleSet = exampleSetInput.getData();
       
        IEntityMapping user_mapping=new EntityMapping();
         IEntityMapping item_mapping=new EntityMapping();
        IRatings training_data=new Ratings();
       
        if (exampleSet.getAttributes().getSpecial("user identification") == null) {
                throw new UserError(this,105);
            }
       
       if (exampleSet.getAttributes().getSpecial("item identification") == null) {
                throw new UserError(this, 105);
            }
      
       if (exampleSet.getAttributes().getLabel() == null) {
                throw new UserError(this, 105);
            }
      
       Attributes Att = exampleSet.getAttributes();
       AttributeRole ur=Att.getRole("user identification");
       Attribute u=ur.getAttribute();
       AttributeRole ir=Att.getRole("item identification");
       Attribute i=ir.getAttribute();
       Attribute ui=Att.getLabel();
       
        for (Example example : exampleSet) {
         
          double j=example.getValue(u);
          int uid=user_mapping.ToInternalID((int) j);

          j=example.getValue(i);
          int iid=item_mapping.ToInternalID((int) j);

          double r=example.getValue(ui);
          training_data.Add(uid, iid, r);
       
        }
   
         MatrixFactorization recommendAlg=new MatrixFactorization();
        
         recommendAlg.user_mapping=user_mapping;
         recommendAlg.item_mapping=item_mapping;
         recommendAlg.NumFactors=getParameterAsInt("Num Factors");
         recommendAlg.Regularization=getParameterAsDouble("Regularization");
         recommendAlg.NumIter=getParameterAsInt("Iteration number");
         recommendAlg.InitMean=getParameterAsDouble("Initial mean");
         recommendAlg.InitStdev=getParameterAsDouble("Initial stdev");
         recommendAlg.LearnRate=getParameterAsDouble("Learn rate");
        
        
         recommendAlg.SetMinRating(getParameterAsInt("Min Rating"));
         recommendAlg.SetMaxRating(recommendAlg.GetMinRating()+getParameterAsInt("Range"));
       
         recommendAlg.SetRatings(training_data);

         recommendAlg.Train();
        
        exampleSetOutput.deliver(exampleSet);
        exampleSetOutput1.deliver(recommendAlg);
        }
   
}

TOP

Related Classes of com.rapidminer.operator.RatingPrediction.MatrixFO

TOP
Copyright © 2018 www.massapi.com. All rights reserved.
All source code are property of their respective owners. Java is a trademark of Sun Microsystems, Inc and owned by ORACLE Inc. Contact coftware#gmail.com.